DISCOVERING STATISTICS USING R

Multilevel linear models

Self-test answers
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; e Using what you know about ggplot2, produce the graph described above.
J“T"'P Display the levels of Surgery_Text in colours, and use Clinic to produce different
y graphs within a grid.
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To demonstrate exactly how the graph is built up, we will work through the commands in steps;
however, in reality you would probably just use a single command. First, we create an object (which
I've called pgrid) using the ggplot() function. Within this function, we specify the dataframe that we
want to use (surgeryData) and the variables on the x- and y-axes (Base_QolL and Post_Qol,
respectively).

pgrid <- ggplot(surgeryData, aes(Base_QoL, Post QoL))

We then add a title using the opts() function. It should be self-evident from the example how this
function works.

pgrid + opts(title="Quality of Life Pre-Post Surgery at 10 Clinics"™)

Next we want to add some data points. To do this we use the geom_point() function, which, left to
its own devices, will simply add points on the graph reflecting each value of baseline quality of life
against its corresponding value of quality of life after surgery. However, we’d like these data points to
differentiate whether a person had surgery or was on the waiting list. We have a variable in the file
that specifies, as text, whether someone had surgery or was on the waiting list (Surgery_Text). We
can specify that the colour of the point is determined by the value of the variable Surgery_Text. This
is done by including aes(colour = Surgery_Text) within the geom_point() function.

pgrid + geom_point(aes(colour = Surgery Text))

So far, so good. It would be fun, though, to plot a regression line as a summary of the relationship
between baseline and post-surgery quality of life. We can do this using the geom_smooth() function.
As with our data points, we want separate lines for those who had surgery and those on the waiting
list. We achieve this in exactly the same way by including aes(colour = Surgery_Text). We also need to
tell geom_smooth() which type of model we want to fit; we want a linear model, so we include
method = “Im”, and to keep things simple we don’t want to plot the confidence interval around the
regression line, so we set se = F, to switch these off (se = F means ‘standard error = FALSE’; if you want
to switch the confidence intervals on you can change this option to TRUE, or se = T, or simply omit the
option because the default option is to plot the standard errors).

pgrid + geom_smooth(aes(colour = Surgery_Text), method = "Im", se = F)

We also wanted to plot different graphs for each clinic. An efficient way to plot multiple graphs
showing the same thing is to use the facet_wrap() function, which will create a grid of graphs with
each grid location representing a level of the specified variable. In this case we specify Clinic as the

variable. This will create a grid of graphs; however, | specifically want a grid with five columns and two
rows, so | have specified that | want five columns by typing ncol = 5.

pgrid + facet wrap(~Clinic, ncol = 5)
Lastly, we can tidy up the axis labels by specifying the text that we wish to appear (the text will be

printed exactly how you type it within the quotes, so remember to capitalize as you see fit and check
your spelling!

pgrid + labs(x = "Quality of Life (Baseline)", y = "Quality of Life (After Surgery)')
We can write all of this in a single command as follows:

pgrid <- ggplot(surgeryData, aes(Base_QoL, Post QoL)) + opts(title="Quality of Life
Pre-Post Surgery at 10 Clinics™)
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pgrid + geom_point(aes(colour = Surgery Text)) + geom_smooth(aes(colour =
Surgery_Text), method = "Im", se = F) + facet_wrap(~Clinic, ncol = 5) + labs(x =
"Quality of Life (Baseline)", y = "Quality of Life (After Surgery)")

'1; sl e Using what you know about ANOVA, conduct a one-way ANOVA using Surgery

M as the predictor and Post_Qol as the outcome.

You can run the ANOVA by using the following commands to create an object called surgeryANOVA
and then using the summary function to show the output from the ANOVA:

surgeryANOVA<-aov(Post_QoL~Surgery, data = surgeryData)
summary (surgeryANOVA)

e Using what you know about ANCOVA, conduct a one-way ANCOVA using
Surgery as the predictor, Post_QoL as the outcome and Base_QolL as the
covariate.

You can run the ANCOVA by using the following commands to create an object called surgeryANCOVA
and then using the summary function to show the output from the ANCOVA. Remember, that the
aov() function produces Type | sums of squares so we use the Anova() function to get the Type Il
sums of squares that you’ll be used to seeing:

surgeryANCOVA<-aov(Post_QolL~Base QoL + Surgery, data = surgeryData)

summary (surgeryANCOVA)

Anova(surgeryANCOVA, type="I111")
e We have used the update function in this second example. To get some practice

at specifying multilevel models, try building each of the models in this example
but specifying each one in full.

intercept <-gls(Life_Satisfaction~1, data = restructuredData, method = "ML", na.action
= na.exclude)

randomlntercept <-Ime(Life_Satisfaction ~1, data = restructuredData, random =

~1]Person, method = "ML", na.action = na.exclude, control = list(opt="optim"))
timeRI<-Ime(Life_Satisfaction~Time, data = restructuredData, random = ~1|Person,
method = "ML", na.action = na.exclude, control = list(opt="optim"))
timeRS<-Ime(Life_Satisfaction~Time, data = restructuredData, random = ~Time]Person,
method = "ML, na.action = na.exclude, control = list(opt="optim))
ARModel<-Ime(Life_Satisfaction~Time, data = restructuredData, random = ~Time|Person,
correlation = corAR1(0, form = ~Time|Person), method = "ML", na.action = na.exclude,

control = list(opt="optim))

imeQuadratic<-Ime(Life_Satisfaction~Time + I(Time”2), data = restructuredData, random
~Time|Person, correlation = corAR1(0, form = ~Time]Person), method = "ML", na.action
na.exclude, control = list(opt="optim™))

I =

timeCubic <-Ime(Life_Satisfaction~Time + I(Time”2) + I(Timen3), data =
restructuredData, random = ~Time|Person, correlation = corAR1(0, form = ~Time|Person),
method = "ML", na.action = na.exclude, control = list(opt="optim"))

polyModel<-Ime(Life_Satisfaction~poly(Time, 3), data = restructuredData, random =
~Time|Person, correlation = corAR1(0, form = ~Time|Person), method = "ML", na.action =
na.exclude, control = list(opt="optim™))
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Oliver Twisted

Please Sir, can | have some more ... ICC?

The following article appears in:

f"\% Field, A. P. (2005). Intraclass correlation. In B. Everitt & D. C. Howell (Eds.),
l.+* Encyclopedia of behavioral statistics (Vol. 2, pp. 948-954). Hoboken, NJ: Wiley.

It appears in adapted form below.

Commonly used correlations such as the Pearson product-moment correlation measure the
bivariate relation between variables of different measurement classes. These are known as interclass
correlations. By ‘different measurement classes’ we really just mean variables measuring different
things. For example, we might look at the relation between attractiveness and career success. Clearly
one of these variables represents a class of measures of how good looking a person is, whereas the
other represents the class of measurements of something quite different: how much someone
achieves in their career. However, there are often cases in which it is interesting to look at relations
between variables within classes of measurement. In its simplest form, we might compare only two
variables. For example, we might be interested in whether anxiety runs in families, and we could look
at this by measuring anxiety within pairs of twins (Eley & Stevenson, 1999). In this case the objects
being measured are twins, and both twins are measured on some index of anxiety. As such, there is a
pair of variables both measuring anxiety, therefore, from the same class. In such cases, an intraclass
correlation (ICC) is used and is commonly extended beyond just two variables to look at the
consistency between judges. For example, in gymnastics, ice skating, diving and other Olympic sports,
contestant’s performance is often assessed by a panel of judges. There might be 10 judges, all of
whom rate performance out of 10; therefore, the resulting measures are from the same class (they
measure the same thing). The objects being rated are the competitors. This again is a perfect scenario
of an intraclass correlation.

Models of Intraclass Correlations

There are a variety of different intraclass correlations (McGraw & Wong, 1996; Shrout & Fleiss, 1979)
and the first step in calculating one is to determine a model for your sample data. All of the various
forms of the intraclass correlation are based on estimates of mean variability from a one-way
repeated-measures analysis of variance.

All situations in which an intraclass correlation is desirable will involve multiple measures on
different entities (be they twins, Olympic competitors, pictures, sea slugs, etc.). The objects measured
constitute a random factor in the design (they are assumed to be random exemplars of the
population of objects). The measures taken can be included as factors in the design if they have a
meaningful order, or can be excluded if they are unordered as we shall now see.

One-Way Random Effects Model

In the simplest case we might have only two measures (think back to our twin study on anxiety).
When the order of these variables is irrelevant (for example, with our twins it is arbitrary whether we
treat the data from the first twin as being anxiety measure 1 or anxiety measure 2). In this case, the
only systematic source of variation is the random variable representing the different objects. As such,
we can use a one-way ANOVA of the form:

Xy = M+T +ey

in which r; is the effect of object i (known as the row effects), j is the measure being considered, and
e; is an error term (the residual effects). The row and residual effects are random, independent and
normally distributed. Because the effect of the measure is ignored, the resulting intraclass correlation
is based on the overall effect of the objects being measured (the mean between-object variability
MSgows) and the mean within-object variability (MSy,). Both of these will be formally defined later.
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Two-Way Random Effects Model

When the order of measures is important then the effect of the measures becomes important. The
most common case of this is when measures come from different judges or raters. Hodgins and
Makarchuk (2003), for example, show two such uses; in their study they took multiple measures of
the same class of behaviour (gambling) but also took measures from different sources. They
measured gambling both in terms of days spent gambling and money spent gambling. Clearly these
measures generate different data so it is important to which measure a datum belongs (it is not
arbitrary to which measure a datum is assigned). This is one scenario in which a two-way model is
used. However, they also took measures of gambling both from the gambler and a collateral (e.g.
spouse). Again, it is important that we attribute data to the correct source. So, this is a second
illustration of where a two-way model is useful. In such situations the intraclass correlation can be
used to check the consistency or agreement between measures or raters.

In this situation a two-way model can be used as follows:

Xy = H+T +Cj +TC; +e;

in which ¢; is the effect of the measure (i.e. the effect of different raters, or different measures), and
rc; is the interaction between the measures taken and the objects being measured. The effect of the
measure (c;) can be treated as either a fixed effect or a random effect. How it is treated doesn’t affect
the calculation of the intraclass correlation, but it does affect the interpretation (as we shall see). It is
also possible to exclude the interaction term and use the model:

Xij :y+ri+Cj +eij

We shall now turn our attention to calculating the sources of variance needed to calculate the
intraclass correlation.

Sources of Variance: An Example

In the chapter in the book on repeated-measures ANOVA, there is an example relating to student
concerns about the consistency of marking between lecturers. It is common that lecturers obtain
reputations for being ‘hard’ or ‘light’ markers which can lead students to believe that their marks are
not based solely on the intrinsic merit of the work, but can be influenced by who marked the work. To
test this we could calculate an intraclass correlation. First, we could submit the same eight essays to
four different lecturers and record the mark they gave each essay. Table 1 shows the data, and you
should note that it looks the same as a one-way repeated-measures ANOVA in which the four
lecturers represent four levels of an ‘independent variable’ and the outcome or dependent variable is
the mark given (in fact | use these data as an example of a one-way repeated-measures ANOVA).
Table 1:

1 62 58 63 64 61.75 6.92 20.75

2 63 60 68 65 64.00 11.33 34.00

3 65 61 72 65 65.75 20.92 62.75

4 68 64 58 61 62.75 18.25 54.75

5 69 65 54 59 61.75 43.58 130.75
6 71 67 65 50 63.25 84.25 252.75
7 78 66 67 50 65.25 132.92 398.75
8 75 73 75 45 67.00 216.00 648.00
Mean 68.88 64.25 65.25 57.38 63.94 Total: 1602.50

There are three different sources of variance that are needed to calculate an intraclass correlation
which we shall now calculate. These sources of variance are the same as those calculated in one-way
repeated-measures ANOVA. (If you don’t believe me, consult Smart Alex’s answers to Chapter 13 to
see an identical set of calculations!).

The Between-Object Variance (MSgows)
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The first source of variance is the variance between the objects being rated (in this case the between-
essay variance). Essays will naturally vary in their quality for all sorts of reasons (the natural ability of
the author, the time spent writing the essay, etc.). This variance is calculated by looking at the
average mark for each essay and seeing how much it deviates from the average mark for all essays.
These deviations are squared because some will be positive and others negative and so would cancel
out when summed. The squared errors for each essay are weighted by the number of values that
contribute to the mean (in this case the number of different markers, k). So, in general terms we write
this as:

SSRows = Z:;kl (iRowi - )zall rows )2

Or, for our example, we could write it as:

n
— 2
SSEssays = Z ki (xEssayi - ><allessays)
i=1
This would give us:

SSpows = 4(61.75-63.94)" +4(64.00 —63.94)° +4(65.75—-63.94)" + 4(62.75-63.94)" +...

+4(61.75-63.94)" +4(63.25-63.94)" + 4(65.25-63.94) +4(67.00 - 63.94)°
=19.18+0.014+13.10+5.66 +19.18+1.90 + 6.86 + 37.45
=103.34

Rows

This sum of squares is based on the total variability and so its size depends on how many objects
(essays in this case) have been rated. Therefore, we convert this total to an average known as the
mean squared error (MS) by dividing by the number of essays (or in general terms the number of
rows) minus 1. This value is known as the degrees of freedom.

MS. = SSious _ 103.34 _ 103.34
n-1 7

=14.76
Rows df

Rows

The mean squared error for the rows in the table is our estimate of the natural variability between
the objects being rated.

The Within-Judge Variability (MSy)

The second variability in which we’re interested is the variability within measures/judges. To calculate
this we look at the deviation of each judge from the average of all judges on a particular essay. We
use an equation with the same structure as before, but for each essay separately:

p

SSEssay = Z( )ZCOIumn k )Zall columns )2

k=1

For essay 1, for example, this would be:

SSeys = (62-61.75)" +(58-61.75)" +(63-61.75)" +(64-61.75)° = 20.75
The degrees of freedom for this calculation are again one less than the number of scores used in the
calculation: the number of judges, k, minus 1.

We have to calculate this for each of the essays in turn and then add these values up to get the total
variability within judges. An alternative way to do this is to use the variance within each essay. The
equation mentioned above is equivalent to the variance for each essay multiplied by the number of
values on which that variance is based (in this case the number of judges, k) minus 1. As such we get:
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SSW = Séssayl (kl _1) + Séssayz (kz _1) + Séssays (ks _1) +...+ Séssayn (kn _1)
Table 1 shows the values for each essay in the last column. When we sum these values we get
1602.50. As before, this value is a total and so depends on the number essays (and the number of
judges). Therefore, we convert it to an average, by dividing by the degrees of freedom. For each essay
we calculated a sum of squares that we saw was based on k— 1 degrees of freedom. Therefore, the
degrees of freedom for the total within-judge variability are the sum of the degrees of freedom for
each essay:

df,, =n(k-1)

in which n is the number of essays and k is the number of judges. In this case it will be 8(4-1) = 24.
The resulting mean squared error is, therefore:

SS,, 1602.50 1602.50

= = —66.77
df, n(k-1) 24

MS,, =

The Between-Judge Variability (MScoumns)

The within-judge or within-measure variability is made up of two components. The first is the
variability created by differences between judges. The second is unexplained variability (error, for
want of a better word). The variability between judges is again calculated using a variant of the same
equation that we’ve used all along, only this time we’re interested in the deviation of each judge’s
mean from the mean of all judges:

P — 2
SSColumns = Z n (xCqumni - Xall columns)
k=1

or:

P _

SSJudges = Z n; (XJudgei -X

k=1

2
all judges )

in which n is the number of things that each judge rated. For these data we’d get:

S, =8(68.88—63.94)% +8(64.25—63.94)2 +8 (65.25—63.94)% +8 (57.38— 63.94)°
=554

Columns

The degrees of freedom for this effect are the number of judges, k, minus 1. As before, the sum of
squares is converted to a mean squared error by dividing by the degrees of freedom:

S 554 554
Columns df k _1 3

Columns __

MS =184.67

Columns

The Error Variability (MSg)

The final variability is the variability that can’t be explained by known factors such as variability
between essays or judges/measures. This can be easily calculated using subtraction because we know
that the within-judges variability is made up of the between-judges variability and this error:

SSyy = SS¢ umns T SSe
SS; =SS, —SS¢1mns
The same is true of the degrees of freedom:
df,, = dfgums +dfe
dfe =df,, —df o yms

So, for these data we get:
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SS, =SS, —SSeyume
=1602.50-554
=1048.50

and
df,_ =df,, —df
=24-3
=21
We get the average error variance in the usual way:
SS. 1048.50
df.

Columns

=49.93

MS, =

Calculating Intraclass Correlations
Having computed the necessary variance components, we shall now look at how the intraclass
correlation is calculated. Before we do so, however, there are two important decisions to be made.

Single Measures of Average Measures

So far we have talked about situations in which the measures we’ve used produce single values.
However, it is possible that we might have measures that produce an average score. For example, we
might get judges to rate paintings in a competition based on style, content, originality, and technical
skill. For each judge, their ratings are averaged. The end result is still ratings from a set of judges, but
these ratings are an average of many ratings. Intraclass correlations can be computed for such data,
but the computation is somewhat different.

Consistency or Agreement?

The next decision involves whether you want a measure of overall consistency between
measures/judges. The best way to explain this distinction is to return to our lecturers marking essays.
It is possible that particular lecturers are harsh in their ratings (or lenient). A consistency definition
views these differences as an irrelevant source of variance. As such the between-judge variability
described above (MScoumns) iS ignored in the calculation (see Table 2). In ignoring this source of
variance we are getting a measure of whether judges agree about the relative merits of the essays
without worrying about whether the judges anchor their marks around the same point. So, if all the
judges agree that essay 1 is the best, essay 5 is the worst (or their rank order of essays is roughly the
same) then agreement will be high: it doesn’t matter that Dr Field’s marks are all 10% higher than Dr
Death’s. This is a consistency definition of agreement.

The alternative is to treat relative differences between judges as an important source of
disagreement. That is, the between-judge variability described above (MScoumns) is treated as an
important source of variation and is included in the calculation (see Table 2). In this scenario
disagreements between the relative magnitude of judge’s ratings matters (so, the fact that Dr Death’s
marks differ from Dr Field’s will matter even if their rank order of marks is in agreement). This is an
absolute agreement definition. By definition the one-way model ignores the effect of the measures
and so can have only this kind of interpretation.

Equations for ICCs

Table 2 shows the equations for calculating ICC based on whether a one-way or two-way model is
assumed and whether a consistency or absolute agreement definition is preferred. For illustrative
purposes, the ICC is calculated in each case for the example used in this entry. This should enable the
reader to identify how to calculate the various sources of variance. In this table MScqumns iS
abbreviated to MS¢ and MSg,, is abbreviated to MSg.

Table 2:

Mod Interpretati Equation ICC for example data
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el on
One- Absolute MS, —MS,, 14.76-66.77 _0.24
way  Agreement  Afg 4 (k—1)MS,, 14.76 +(4-1)66.77 '
Two- Consistency MS, -MS, 14.76-49.93 021
LR MS, +(k—1)MS, 1476 +(4-1)49.93
Absolute MS, —MS, 14.76 —49.93 01
Agreement 4 I
8 MS, +(k=1)MS, +E(M5C _MS,) 14.76+(4—1)49.93+g(184.67—49.93)
n
ICC for average scores
One- Absolute MS, -MS,, 14.76 - 66.77 350
way  Agreement MS, 14.76 -
Two- Consistency MS, — MS 14.76 — 49.93
R E — "~ -_238
Way MS, 14.76
Absolute MS; —MS; 14.76 —49.93 111
Agreement MS, + MS. -MS, 14.76 + 184.67 —49.93

n

Significance Testing

The calculated intraclass correlation can be tested against a value under the null hypothesis using a
standard F-test (see analysis of variance). McGraw and Wong (1996) describe these tests for the
various intraclass correlations we’ve seen, and Table 3 summarizes their work. In this table ICC is the
observed intraclass correlation whereas py is the value of the intraclass correlation under the null
hypothesis. That is, it's the value against which you wish to compare the observed intraclass
correlation. So, replace this value with 0 to test the hypothesis that the observed ICC is greater than
zero, but replace it with other values such as .1, .3 or .5 to test that the observed ICC is greater than
know values of small medium and large effect sizes, respectively.

Table 3:
Model Interpretation F-ratio df1 df2
One-  Absolute MS, 1- p, n-1 n(k-1)
way Agreement MS X 11 (k _1) e
w 0
Two-  Consistency MS, 1-p, n-1 (n-1)k-1)
X
e MS.  1+(k-1)p,
:bsolute |\/|SR n-1 (aMSC i bl\/lSE )2
greement —aMS +bMS - -
A B Il (aMS.)* | (bMS,)
in whic
e k=1 (n-1)(k-1)
”(1 —Po )
”(1 —Po )

ICC for Average Scores
One-  Absolute 1-p, n-1 n(k-1)
way Agreement 1-I1CcC
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Two-  Consistency 1-p, n-1 (n-1)k-1)
Way 1-1cC
Absolute MS, n-1 (CMSC " dMSE )2
Agreement cMS,. +dMS, > 5
in which (CMSC) + (dMSE)
o Po k-1 (n-1)(k-1)
”(1_,00)
b = 1+M
n(l_po)

Fixed versus Random Effects

| mentioned earlier on that the effect of the measure/judges can be conceptualized as a fixed or
random effect. Although it makes no difference to the calculation, it does affect the interpretation.
Essentially, this variable should be regarded as random when the judges or measures represent a
sample of a larger population of measures or judges that could have been used. Put another way, the
particular judges or measures chosen are not important and do not change the research question
you’re addressing. However, the effect of measures should be treated as fixed when changing one of
the judges or measures would significantly affect the research question (see fixed and random
effects). For example, in the gambling study mentioned earlier it would make a difference if the
ratings of the gambler were replaced: the fact that gamblers gave ratings was intrinsic to the research
question being addressed (do gamblers give accurate information about their gambling?). However,
in our example of lecturer’s marks, it shouldn’t make any difference if we substitute one lecturer with
a different one: we can still answer the same research question (do lecturers, in general, give
inconsistent marks?). In terms of interpretation, when the effect of the measures is a random factor,
the results can be generalized beyond the sample; however, when they are a fixed effect, any
conclusions apply only to the sample on which the ICC is based (McGraw & Wong, 1996).
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Please Sir, can | have some more ... centring?

We'll use the Cosmetic Surgery.dat data to illustrate the two types of centring discussed in the book
chapter. Load this file into R. Let’s assume that we want to centre the variable BDI.

Grand mean centring

Grand mean centring is really easy since we can simply use the scale() function that we
"“r& encountered in the book. To create a new variable in the surgeryData dataframe, we
simply access this dataframe:

b""lh\

surgeryData = read.delim(*"Cosmetic Surgery.dat”, header = TRUE)

i and then use the scale function to create a new variable in surgeryData called
BDI_Centred:

surgeryData$BDI_Centred<-scale(surgeryData$BDl, scale = F)
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Within the scale() function itself, surgeryDataSBDI just specifies the variable that you’d like to scale
(in this case BDI) , and scale = F just tells it not to scale the variable (the F stands for FALSE). Scaling
the variable means converting to a standardized score (by dividing by the standard deviation). There
is another option, center = TRUE/FALSE, which tells R whether or not to centre the variable. The
default is TRUE, so we don’t actually need to specify it; by not specifying it, we are telling R to create a
new variable based on BDI that is centred but not scaled. The end result is a grand mean centred
variable. If you look at the data using print(surgeryData), you’ll find a variable has been added
(BDI_Centred), which is BDI but grand mean centred.

866 X surgeryData

L r BI 3 i
3 73 1 4] 0 31 0 12 List Change Appearance E
0 74 1 4] 0 32 0 16 Waiting List Change BAppearance J
4] 80 1 4] 0 33 0 13 Waiting List Change Bppearance
=l 76 1 0 o 59 1 11 Waiting List Change Appearance
4] 71 1 4] o 81 1 11 Waiting List Change BRppearance
5 72 1 4] 1 32 0 10 Waiting List Physical reason
4] 71 1 4] 1 33 o 11 Waiting List Physical reason
4] 73 1 4] 1 35 0 15 Waiting List Physical reason
5 g0 1 1 0 25 0 30 Cosmetic Surgery Change Bhppearance
4] 64 1 4] 0 55 1 36 Waiting List Change Bppearance
o] 71 1 0 0 57 1 37 Waiting List Change Bppearance
El 72 1 4] o 29 0 34 Waiting List Change BRppearance
o} 68 1 0 1 31 0 30 Waiting List Physical reason
o0 65 1 4] 1 32 0 31 Waiting List Physical reason
|5 1] 1 4] 0 43 o 41 Waiting List Change Rppearance
5 i) 76 1 4] 1 45 0 34 Waiting List Physical reason
4] 69 1 4] 0 4s 0 36 Waiting List Change Bppearance
1 73 1 1 0 18 0 30 Cosmetic Surgery Change Lppearance
4] 66 1 1 1 19 0 25 Cosmetic Surgery Physical reason
al 61 1 1 1 20 0 31 Cosmetic Surgery Physical reason
4] 1] 1 4] 0 51 1 35 Waiting List Change Bppearance
2 70 2 0 1 40 o 27 Waiting List Physical reason
4] 91 2 4] 1 41 1 13 Waiting List Physical reason
4] 73 2 4] 1 43 1 15 Waiting List Physical reason J
Ll P,

Group mean centring

Group mean centring is a little more complicated, but still pretty easy. We'll again use BDI as the
variable that we want to centre. If we want to centre this around the group mean for each clinic, then
we first need to know what the mean BDI was within each clinic. We do this by creating a new
dataframe that contains the mean BDI score for each clinic using the aggregate() function. This
function works by first specifying the variable that we want to analyse, in this case the BDI variable
within the surgeryData dataframe (surgeryDataSBDI), we then specify a variable by which we want to
aggregate the data. In this case, we want to aggregate across clinics, so we need to specify the Clinic
variable from the surgeryData dataframe. We have to specify this variable in list form because it’s
possible to specify more than one variable to do the aggregation. So, if you wanted to aggregate
across variables x, y and z you would specify list(x, y, z). In our case, we are aggregating by only one
variable, so we specify this single variable but in list form, list(surgeryDataSClinic). We then specify
the summary statistic that we want from the aggregation process, and this is simply the mean so we
type mean. The next function, names(), is used to rename the variables in the new dataframe. The
new dataframe will contain two variables: one specifying the levels of Clinic (this will be the same as
the variable Clinic in the surgeryData dataframe), and the other containing the mean BDI score for
each clinic. Therefore, we name these two variables Clinic and BDI_Mean. It is important that we
gave Clinic the same name as the corresponding variable in surgeryData because we will use this

variable to merge the new dataframe with surgeryData.
groupMeans<-aggregate(surgeryData$BDl, list(surgeryData$Clinic), mean)
names(groupMeans)<-c(**Clinic", "BDI_Mean™)

To get a feel for what has happened, let’s look at the contents of the groupMeans dataframe:
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You can see there are two variables, one defining the clinic (Clinic) and the other showing the mean
BDI score for that clinici (BDI_Mean). The next step is to use these clinic means in the aggregated
dataframe to centre the BDI variable in our main dataframe. To do this we need to use the merge()
function. The merge() function takes the form merge(x, y, by = common variable) in which x and y are
the two dataframes that you want to merge. In this case we want to merge surgeryData with the
groupMeans dataframe that we have just created. These dataframes have only one variable in
common (Clinic) so we define this variable in the by option. Rather than create a whole new

dataframe, we will simply overwrite the existing surgeryData.

surgeryData<-merge(surgeryData, groupMeans, by = "Clinic")

The result is that we recreate surgeryData to include the variable BDI_Mean from the groupMean

dataframe. Again, let’s take a quick look to get an idea of what we have done:
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R Data Editor
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Note that all that has changed is that there is a new variable that for each case of data contains the
mean BDI score within the clinic to which a person belonged. The final stage is to do the centring. All
we do when we centre is take the actual score (in this case BDI) and subtract from it the mean BDI
score for the group (BDI_Mean). We, therefore, create a new variable in the surgeryData dataframe

called BDI_GpMLC that is simply the BDI score minus the group BDI score:

surgeryData$BDIl_GpMC<-surgeryData$BDIl-surgeryData$BDIl_Mean

We can again look at how surgeryData has changed:

D
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R Data Editor

[

Clinit particny Post_Qol Base QoL Surgery Reason Age Gender BDI Surgery_Text Reason_Text Genmder_Text BDI_Mean
25.19.
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25.19...
25:19..
25.19...
25.19...
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25.19...
25.19...
25.19...
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1 4 68.9 76 ] 0 59 1 11 Waiting List Change ... Male

1 5 69 71 4] 0 61 1 11 Waiting List Change ... Male

1 6 68.5 72 ] 1 32 0 10 Waiting List Physical ... Female
1 7 70 Ti 0 ¥ 330 11 Waiting List Physical ... Female
I 8 75 73 Q i 35 0 15 Waiting List Physical ... Female
1 9 61.5 B0 1 0 25 0 30 Cosmeti... Change ... Female
1 10 68 64 (v} 0 55 |1 36 Waiting List Change ... Male

1 11 69 71 0 1] 57 1 37 Waiting List Change ... Male
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1 15 73.5 66 0 0 43 0 41 Waiting List Change ... Famale
1 16 66 76 ] 1 45 |0 34 Waiting List Physical ... Female
1 17 68 69 ] 0 46 0 36 Waiting List Change ... Female
1 18 61.1 73 1 0 18 0 30 Cosmeti... Change ... Female
1 19 56 66 1 1 19 0 25 Cosmeti... Physical ... Female
1 20 63 61 1 k 20 0 31 Cosmeti... Physical ... Female
1 21 67 66 0 0 511 35 Waiting List Change ... Male

2 22 88.2 70 Q 1 40 0 27 Waiting List Physical ... Female
2 23 70 91 0 1 41 1 13 Waiting List Physical ... Male

2 24 72 73 0 1 43 1 15 Waiting List Physical ... Male

2 0 1 n

25 75 1 75 21 17 _Waitina List Phwsical Female

31.32
31.32
31.32
3132

BDI_GpMC
-13.19048
-9.190476
-12.19048
-14.19048
-14.19048
-15.18048
-14.19048
-10.19048
4.809524
10.80952
11.80952
8.809524
4.809524
5.809524
15.80952
8.809524
10.80952
4.809524
-0.1904762
5.809524
9.809524
-4.32
-18.32
-16.32
=14 32

We have created a new variable (BDI_GpMC) which is the group mean centred BDI score; for
example, for participant 1, the value of BDI_GpMC is 12 — 25.19 = — 13.19 — in other words, the BDI

score minus the group mean of BDI for the clinic.

Labcoat Leni’s real research

A fertile gesture

Problem

Miller, G., Tybur, J. M., & Jordan, D. B. (2007). Evolution and Human Behavior, 28, 375-381.

/

Most female mammals experience a phase of ‘estrus’ during which they are more
sexually receptive, proceptive, selective and attractive. As such, the evolutionary

benefit to this phase is believed to be to attract mates of superior genetic stock.
. However, some people have argued that this important phase became uniquely
/™ lost or hidden in human females. Testing these evolutionary ideas is
lll ,“.' exceptionally difficult, but Geoffrey Miller and his colleagues came up with an
- |/," incredibly elegant piece of research that did just that. They reasoned that if the
— - ‘hidden-estrus’ theory is incorrect then men should find women most attractive

during the fertile phase of their menstrual cycle compared to the pre-fertile (menstrual) and post-

fertile (luteal) phase.

PROFESSOR ANDY P FIELD

12



DISCOVERING STATISTICS USING R

To measure how attractive men found women in an ecologically valid way, they came up with the
ingenious idea of collecting data from women working at lap-dancing clubs. These women maximize
their tips from male visitors by attracting more dances. In effect the men ‘try out’ several dancers
before choosing a dancer for a prolonged dance. For each dance the male pays a ‘tip’. Therefore, the
greater the number of men choosing a particular woman, the more her earnings will be. As such, each
dancer’s earnings are a good index of how attractive the male customers have found her. Miller and
his colleagues argued, therefore, that if women do have an estrus phase then they will be more
attractive during this phase and therefore earn more money. This study is a brilliant example of using
a real-world phenomenon to address an important scientific question in an ecologically valid way.

The data for this study are in the file Miller et al. (2007).dat. The researchers collected data via a
website from several dancers (ID), who provided data for multiple lap-dancing shifts (so for each
person there are several rows of data). They also measured what phase of the menstrual cycle the
women were in at a given shift (Cyclephase), and whether they were using hormonal contraceptives
(Contraceptive) because this would affect their cycle. The outcome was their earnings on a given shift
in dollars (Tips).

A multilevel model can be used here because the data are unbalanced: the women differed in the
number of shifts they provided data for (the range was 9 to 29 shifts); multilevel models can handle
this problem.

Labcoat Leni wants you to carry out a multilevel model to see whether Tips can be predicted from
Cyclephase, Contraceptive and their interaction. Is the ‘estrus-hidden’ hypothesis supported?
Answers are in the additional material on the companion website (or look at page 378 in the original
article).

Solution

In the model that Miller et al. fitted, they did not assume that there would be random slopes (i.e. the
relationship between each predictor and tips was not assumed to vary within lap dancers). This
decision is appropriate for Contraceptive because this variable didn’t vary at level 2 (the lap dancer
was either taking contraceptives or not, so this could not be set up as a random effect because it
doesn’t vary over our level 2 variable of participant). Also, because Cyclephase is a categorical
variable with three unordered categories we could not expect a linear relationship with tips: we
expect tips to vary over categories but the categories themselves have no meaningful order.
However, we might expect tips to vary over participants (some lap dancers will naturally get more
money than others) and we can factor this variability in by allowing the intercept to be random. As
such, we’ll fit a random intercept model to the data.

First we need to get the data. Assuming you have set your working directory to be the folder in
which the data are stored, you can use:

dancerData = read.delim("Miller et al. (2007).dat", header = TRUE)

to create a dataframe called dancerData. The data look like this:

PROFESSOR ANDY P FIELD

13



DISCOVERING STATISTICS USING R

OO R Data Editor =

= P -
g7 = e R
He)

D Contraceptive Cyclephase Tips
100
100 m
130
150
180
200
200
200
220
250

A 300
80
100
100
100

A 100

O ZHKHKHKEHZONODNNNRLRLCOC

I—"I—"}—‘}—'II-J HH PO OoOOCCOCODO OO OO
I |
i.—.

-
e =)
(=N}

200
200 <
220 £
220 )

MKNoO

Note that contraceptive use is stored in a variable that codes 0 = on the pill, 1 = in natural cycle.
Cyclephase is codes with numbers 0 = Luteal, 1 = Menstrual, 2 = Fertile. Ideally, we want to code
Cyclephase in a way that would be most useful for interpretation. R will compare each category
against the first, so we need the first category to be a meaningful control. The group of interest is the
fertile period, so we need this to be coded as the first category (0), to get the contrasts we want.
Unfortunately, it’s currently coded as the last, so we need to turn this variable into a factor and
recode it. This is easily done using the recode() function in the car() package. If you don’t have car()
installed then use the install.packages(“car”) to install it.

library(car)

Cyclephase_Factor <-factor(car::recode(dancerData$Cyclephase, ''2=0;0=2"), levels =
0:2, labels = c("Fertile"™, "Menstrual'™, "Luteal™))

These commands first initialize the car() package. Next we turn Cyclephase into a factor called
Cyclephase_Factor using the factor() function. The first part of the function specifies the variable,
which in this case is the Cyclephase variable in the dancerData dataframe (dancerDataSCyclephase).
However, we have been sneaky and sneaked in a recode function at the same time. The
car::recode(dancerDataSCyclephase, "2=0;0=2" simply means ‘recode the dancerDataSCyclephase
variable so that 2 becomes equal to 0, and 0 becomes equal to 2’. In other words, we’re switching the
coding of 0 and 2 so that the fertile phase, which was coded as 2, will now be coded as 0, and the
luteal phase, which was coded as 0, is now coded as 2. The car::recode at the beginning is just
because there are more than one function called ‘recode’ and this disambiguates the situation by
telling R that we want to use the recode function from the car package. The rest of the function
determines how the factor is created: levels = 0:2 tells the factor() function that the factor will have
three levels coded 0 to 2 inclusive (i.e. 0, 1, 2), and labels = c("Fertile", "Menstrual", "Luteal") gives
these levels names specified in the order given. In other words, we have created a factor called
Cyclephase_Factor in which 0 = Fertile, 1 = Mentstrual, and 2 = Luteal.

I’'m also going to recode the Contraceptive variable in the same way. We don’t need to do this, but it
will keep the output consistent with the SPSS version of the book, so we’ll do it in case anyone is
comparing the two!

Contraceptive_Factor <-factor(car::recode(dancerData$Contraceptive, "0=1;1=0"), levels
= 0:1, labels = c("In Natural Cycle"™, "Using Pill™))

Having constructed factors for our predictor variables we can start to build the model. First we need
to see whether it makes a difference if let the intercepts vary. First, we create a baseline model:

intercept <-gls(Tips~1, data = dancerData, method = "ML", na.action = na.exclude)
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Now we can fit the model with random intercepts. In this example, multiple scores or shifts are
nested within each dancer. Therefore, the level 2 variable is the participant (the lap dancer), and this
variable is represented by the variable labelled ID. To allow intercepts to vary over strippers (ID), we
therefore specify the random part of the model as ~1/ID.

randomint<-Ime(Tips~1, random = ~1]1D, data = dancerData, method = "ML", na.action=
na.exclude)

anova(intercept, randomint)

The anova() function compares these models and yield the following output:

Model df AIC BIC logLik Test L.Ratio p-value
intercept 1 2 3702.974 3710.355 -1849.487
randomInt 2 3 3649.519 3660.591 -1821.760 1 vs 2 55.45485 <.0001

This shows that allowing intercepts to vary across dancers significantly improved the model —in other
words, intercepts varied significantly, y?(1) = 55.45, p < .0001.

We can now add our fixed effects of Cyclephase_Factor, Contraceptive_Factor, and their
interaction. Let’s add Cyclephase_Factor first:

cycleModel<-update(randomlnt, .~. + Cyclephase_Factor, method = "REML')

Note that | have also switched to REML estimation. This is because | needed to use ML to compare
the first two models, but the authors used REML in the analysis they report, so now I’'m not going to
compare models | have switched to be consistent with what they report. We can then update the last
model to add Contraceptive_Factor:

pilIModel<-update(cycleModel, .~. + Contraceptive_Factor)
Finally, we update the last model to include the interaction term:*
finalModel<-update(pillModel, .~. + Cyclephase_Factor:Contraceptive_Factor)

We can get some F-tests for the fixed effects using:

anova(finalModel)

numDF denDF F-value p-value
(Intercept) 1 233 258.87588 <.0001
Cyclephase_ Factor 2 233 48.76266 <.0001
Contraceptive Factor 1 16 8.25671 0.0110
Cyclephase Factor:Contraceptive Factor 2 233 5.31945 0.0055

This output tells us our fixed effects. As you can see, they are all significant. Miller and colleagues
reported these results as follows: ‘Main effects of cycle phase [F(2, 236)=27.46, p < .001] and
contraception use [F(1, 17)=6.76, p < .05] were moderated by an interaction between cycle phase and
pill use [F(2, 236)=5.32, p <.01]’ (p. 378). Their degrees of freedom and F-values differ a bit from ours
because they used SPSS rather than R, but the basic results are the same (you can compare with the
SPSS output below (basically the p-values are the same):

! We could have added all of the fixed effects in a single step by using:

finalModel<-update(randomint, .~. + Cyclephase_Factor*Contraceptive_Factor)

The Cyclephase_Factor*Contraceptive_Factor will add not just the interaction but also lower-order
main effects. The reason | didn’t do this is simply to keep with the general ethos of building up
multilevel models bit-by-bit.
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Type Il Tests of Fixed Effects®

Denaminator
Soyrce Murmeratar df F Sin.
Intercept 1 16673 | 192.3495 .0aa
Contraceptive 1 16673 B.756 0149
Cyclephase 2 235.940 27461 .0on
Contraceptive * Cyclephase 2 235940 5,314 005

a. Dependent Yariable: Tips earned (LIS dollars per shift).

Basically this shows that the phase of the dancer’s cycle significantly predicted tip income, and this
interacted with whether or not the dancer was having natural cycles or was on the contraceptive pill.
However, we don’t know which groups differed.

We can use the main model parameter estimates to tell us this:

summary (finalModel)

The output is shown below (for space reasons I've edited down the variable names):

Linear mixed-effects model fit by REML
Data: stripperData
AIC BIC logLik
3031.277 3059.416 -1507.638
Random effects:
Formula: ~1 | ID
(Intercept) Residual
StdDev: 59.75883 92.90348
Fixed effects: Tips ~ Cyclephase Factor + Contraceptive Factor +

Cyclephase_ Factor:Contraceptive Factor

Value Std.Error DF t-value p-value
(Intercept) 356.6538 21.10812 233 16.896525 0.0000
Cyc_Fac[T.Menstural] -170.8562 17.36623 233 -9.838414 0.0000
Cyc_Fac[T.Luteal] -100.4089 16.42234 233 -6.114161 0.0000
Cont_Fac[T.Using Pill] -141.6240 35.29920 16 -4.012103 0.0010
Cyc_Fac [T.Menstural]:Cont_ Fac[T.Using Pill] 89.9365 34.14396 233 2.634038 0.0090
Cyc_Fac [T.Luteal]: Cont_ Fac[T.Using Pill] 86.0861 30.05306 233 2.864471 0.0046
Correlation:

(Intr) C_F[T.M

Remember that | coded Cyclephase_Factor in a way that would be most useful for interpretation,
which was to code the group of interest (fertile period) as the first category (0), and the other phases
as 1 (Menstrual) and 2 (Luteal). The parameter estimates for this variable, therefore, compare each
category against the first category, and because | made the first category the fertile phase this means
we get a comparison of the fertile phase against the other two. Therefore, we could say (because the
b is negative) that tips were significantly higher in the fertile phase than in the luteal phase, b = —
100.41, t(233) =—-6.11, p <.001, and in the menstrual phase, b =-170.86, t(233) =-9.84, p < .001. The
beta, as in regression, tells us the change in tips as we shift from one group to another, so during the
fertile phase dancers earned about $100 more than during the luteal phase, and $170 more than the
menstrual phase.

These effects don’t factor in the contraceptive use. To look at this we need to look at the contrasts
for the interaction term. The first of these tells us the following: if we worked out the relative
difference in tips between the fertile phase and the luteal phase, how much more do those in their
natural cycle earn compared to those on contraceptive pills? The answer is about $86. In other words,
there is a combined effect of being in a natural cycle (relative to being on the pill) and being in the
fertile phase (relative to the luteal phase) and this is significant, b = 86.09, t(233) = 2.86, p < .01. The
second contrast tells us the following: if we worked out the relative difference in tips between the
fertile phase and the menstrual phase, how much more do those in their natural cycle earn compared
to those on contraceptive pills? The answer is about $90 (the b). In other words, there is a combined
effect of being in a natural cycle and being in the fertile phase compared to the menstrual phase and
this is significant, b = 89.94, t(233) = 2.63, p < .01.

To conclude then, this study showed that the ‘estrus-hidden’ hypothesis is wrong: men did find
women more attractive (as indexed by how many lap dances they did and therefore how much they
earned) during the fertile phase of their cycle compared to the other phases.
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Smart Alex’s solutions
Task 1

e Using the cosmetic surgery example, run the analysis but also including BDI, age and gender
as fixed effect predictors. What differences does including these predictors make?

Let’s assume you were starting from scratch. We'll quickly build up the same models in the book
chapter but using the update() function to speed things up:

surgeryData = read.delim(*'Cosmetic Surgery.dat'”, header = TRUE)
intercept <-gls(Post_QoL~1, data = surgeryData, method = "ML"™)

randomintercept <-Ime(Post_QoL~1, data = surgeryData, random = ~1|Clinic, method =
ML)

randomlnterceptSurgery<-update(randomlntercept, .~. + Surgery)
randomlnterceptSurgeryQoL<-update(randomlnterceptSurgery, .~. + Base_QolL)
addRandomSlope<-update(randomlnterceptSurgeryQoL, random = ~Surgery|Clinic)
addReason<-update(addRandomSlope, .~. + Reason)

finalModel<-update(addReason, .~. + Reason:Surgery)

This gets us to the final model in the book chapter (I have kept the model names consistent with the
book chapter so you can check back and get a feel for how | built these models. To create a new
model that adds in BDI, Age and Gender we can simply update this final model to include these new

predictors. In keeping with the ethos of building multilevel models up a step at a time, we can add
each one in separately, creating three new models:

BDIModel<-update(finalModel, .~. + BDI)
AgeModel<-update(BDIModel, .~. + Age)
genderModel<-update(AgeModel, .~. + Gender)

Or we could skip to the last model and create it by adding in the three new predictors in a single
command:

genderModel<-update(AgeModel, .~. BDI + Age + Gender)

We can compare this new model (genderModel) to the final model in the book (finalModel) to see
whether adding these predictors creates a better-fitting model, and also ask for a summary of the
model and confidence intervals:

anova(finalModel, genderModel); summary(genderModel); intervals(genderModel)

The output that compares the models is as follows:

Model df AIC BIC logLik Test L.Ratio p-value
finalModel 1 9 1807.045 1839.629 -894.5226
genderModel 2 12 1749.385 1792.830 -862.6927 1 vs 2 63.65979 <.0001

Adding in these new predictors does result in a significantly better fitting model, y2(3) = 63.66, p <
.0001. Note that we have added three new things, so our degrees of freedom are 3 (you can get this
from the output as the change in the degrees of freedom (12 — 9 = 3).

The model summary is as follows:

Linear mixed-effects model fit by maximum likelihood
Data: surgeryData
AIC BIC logLik
1749.385 1792.830 -862.6927

Random effects:
Formula: ~Surgery | Clinic
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 4.546213 (Intr)
Surgery 1.437201 -0.829
Residual 5.216628
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Fixed effects: Post QoL ~ Surgery + Base_ QoL + Reason + BDI + Age + Gender +
Surgery:Reason
Value Std.Error DF t-value p-value

(Intercept) 29.753678 3.705127 259 8.030408 0.0000
Surgery -3.995717 1.252947 259 -3.189056 0.0016
Base_ QoL 0.225128 0.050481 259 4.459693 0.0000
Reason 1.403844 1.338861 259 1.048536 0.2954
BDI 0.184942 0.045879 259 4.031092 0.0001
Age 0.287955 0.047834 259 6.019925 0.0000
Gender -1.072723 1.146479 259 -0.935668 0.3503
Surgery:Reason 5.021195 1.482800 259 3.386292 0.0008
Correlation:
(Intr) Surgry Bas_QL Reason BDI Age Gender

Surgery -0.167
Base QoL -0.739 -0.089
Reason -0.454 0.340 0.072
BDI -0.337 0.063 0.059 0.619
Age -0.010 -0.052 -0.300 -0.058 -0.429
Gender 0.034 0.097 -0.018 0.144 0.509 -0.637

Surgery:Reason 0.117 -0.737 0.030 -0.462 -0.038 -0.033 -0.175

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.33705717 -0.74958976 -0.09782865 0.68673398 2.96495854

Number of Observations: 276
Number of Groups: 10

Age, b = 0.29, t(259) = 6.02, p < .001, and BDI, b = 0.18, t(259) = 4.03, p < .001, significantly predicted
quality of life after surgery but gender did not, b = -1.07, t(259) = —0.94, p = .35. The main difference
that including these factors has made is that the main effect of Reason has become non-significant,
and the Reason x Surgery interaction has become more significant (its b has changed from 4.22, p =
.013,t0 5.02, p <.001).

We could break down this interaction as we did in the chapter by creating variables that select out
the physical and cosmetic groups, and then update the model containing only Surgery and Base_QolL
(which was the model called addRandomSlope) to include BDI, Age and Gender.

physicalSubset<-surgeryData$Reason==1

cosmeticSubset<-surgeryData$Reason==

physicalModel<-update(addRandomSlope, .~. + BDl + Age + Gender, subset=
physicalSubset)
cosmeticModel<-update(addRandomSlope, .~. + BDlI + Age + Gender, subset=
cosmeticSubset)

summary(physicalModel)

summary(cosmeticModel)

If you do these analyses you will get the parameter tables below. These tables show a similar pattern
to the example in the book. For those operated on only to change their appearance, surgery
significantly predicted quality of life after surgery, b = -3.16, t(84) = —2.55, p = .01. Unlike when age,
gender and BDI were not included, this effect is now significant. The negative gradient shows that in
these people quality of life was lower after surgery compared to the control group. However, for
those who had surgery to solve a physical problem surgery did not significantly predict quality of life,
b =0.67, t(163) = 0.57, p = .57. In essence the inclusion of age, gender and BDI has made very little
difference in this latter group. However, the slope was positive, indicating that people who had
surgery scored higher on quality of life than those on the waiting list (although not significantly so!).
The interaction effect, therefore, as in the chapter, reflects the difference in slopes for surgery as a
predictor of quality of life in those who had surgery for physical problems (slight positive slope) and
those who had surgery purely for vanity (a negative slope).

Surgery to change appearance

Linear mixed-effects model fit by maximum likelihood
Data: surgeryData
Subset: cosmeticSubset
AIC BIC logLik
573.6497 599.4993 -276.8248

Random effects:

Formula: ~Surgery | Clinic
Structure: General positive-definite, Log-Cholesky parametrization
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StdDev Corr
(Intercept) 5.766448 (Intr)
surgery 2.514847 -0.772
Residual 3.495342

Fixed effects: Post_ QoL ~ Surgery + Base_ QoL + BDI + Age + Gender
Value Std.Error DF t-value p-value
(Intercept) 28.394900 4.225896 84 6.719262 0.0000

surgery -3.163418 1.240321 84 -2.550484 0.0126
Base_ QoL 0.147063 0.055898 84 2.630929 0.0101
BDI 0.472555 0.059681 84 7.918083 0.0000
Age 0.198532 0.060153 84 3.300455 0.0014
Gender -4.696966 1.523293 84 -3.083429 0.0028

Surgery for a physical problem

Linear mixed-effects model fit by maximum likelihood
Data: surgeryData
Subset: physicalSubset
AIC BIC logLik
1154.884 1186.702 -567.4421

Random effects:
Formula: ~Surgery | Clinic
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 4.679270 (Intr)
Surgery 1.668345 -0.794
Residual 5.471991

Fixed effects: Post_QoL ~ Surgery + Base QoL + BDI + Age + Gender
Value Std.Error DF t-value p-value

(Intercept) 29.893045 4.411360 163 6.776379 0.0000
Surgery 0.666083 1.162912 163 0.572772 0.5676
Base_ QoL 0.265651 0.069800 163 3.805899 0.0002
BDI 0.118640 0.064379 163 1.842838 0.0672
Age 0.274836 0.066637 163 4.124374 0.0001
Gender -0.460955 1.502015 163 -0.306891 0.7593

Task 2

e Using our growth model example in this chapter, analyse the data but include Gender as an
additional covariate. Does this change your conclusions?

Let’s recap how we built up the model in the book chapter. First, we read the data into a dataframe
and then restructure it so that it is in the correct format.

satisfactionData = read.delim(**"Honeymoon Period.dat', header = TRUE)

restructuredData<-reshape(satisfactionData, idvar = c(*"'Person', '"Gender'), varying =
c('Satisfaction_Base'", "Satisfaction_6_Months", "Satisfaction_12_Months",
"Satisfaction_18_Months'™), v.names = "Life_Satisfaction”, timevar = "Time"', times =
c(0:3), direction = "long")

We then create a baseline model, then a model with random intercepts:

intercept <-gls(Life_Satisfaction~1, data = restructuredData, method = "ML", na.action
= na.exclude)

randomlntercept <-Ime(Life_Satisfaction ~1, data = restructuredData, random =
~1|Person, method = "ML", na.action = na.exclude, control = list(opt="optim'))

We then added Time as a fixed factor:

timeRI<-update(randomlntercept, .~. + Time)

We then added a random effect of Time across people:

timeRS<-update(timeRl, random = ~Time|Person)

We then added an AR(1) covariance structure:

ARMode I<-update(timeRS, correlation = corAR1(0, form = ~Time]Person))

We then added a quadratic trend ...
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timeQuadratic<-update(ARModel, .~. + 1(Time"2))

... and a cubic trend:

timeCubic <-update(timeQuadratic, .~. + 1(Time"3))

To add the effect of Gender we can simply update this final model to include a fixed effect of gender,
then compare it to the previous model, and get a summary of it:

genderModel <-update(timeCubic, .~. + Gender)

anova(timeCubic, genderModel)

summary(genderModel)

intervals(genderModel)

The output that compares the models is as follows:

Model df AIC BIC logLik Test L.Ratio p-value
timeCubic 1 9 1816.161 1852.901 -899.0808
genderModel 2 10 1818.051 1858.874 -899.0257 1 vs 2 0.1101303 0.74

Adding in the effect of Gender does not result in a significantly better-fitting model, y2(1) = 0.11, p =
.74. The model summary is as follows:
Linear mixed-effects model fit by maximum likelihood

Data: restructuredData

AIC BIC logLik
1818.051 1858.874 -899.0257

Random effects:

Formula: ~Time | Person
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.8854932 (Intr)
Time 0.4056477 -0.352
Residual 1.4569475
Correlation Structure: AR(1)
Formula: ~Time | Person
Parameter estimate(s):
Phi
0.1323070

Fixed effects: Life Satisfaction ~ Time + I(Time®2) + I(Time”3) + Gender
Value Std.Error DF t-value p-value
(Intercept) 6.694935 0.2878553 320 23.257989 0.0000

Time 1.546318 0.4778063 320 3.236285 0.0013
I(Time"2) -1.326026 0.4214584 320 -3.146280 0.0018
I(Time”3) 0.171013 0.0930443 320 1.837975 0.0670
Gender -0.121360 0.3660524 113 -0.331538 0.7409
Correlation:
(Intr) Time I(T*2) I(T"3)
Time -0.218

I(Time”2) 0.111 -0.951
I(Time”3) -0.080 0.896 -0.987
Gender -0.630 0.003 -0.005 0.006

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.57843022 -0.55055690 -0.03672578 0.50911575 2.77705706

Number of Observations: 438
Number of Groups: 115

The fixed effects and the parameter estimates tell us that the linear, b = 1.54, t(320) = 3.24, p < .01,
and quadratic, b = —1.33, £(320) = -3.15, p < .01, trends both significantly described the pattern of the
data over time; however, the cubic trend, b = 0.17, t(320) = 1.84, p > .05 does not. These results are
basically the same as in the chapter. Gender itself is also not significant in this table (note the p-value
is the same as for the log-liklihood test), b =—-0.12, t(113) =-0.33, p = .74.

Approximate 95% confidence intervals

Fixed effects:

lower est. upper
(Intercept) 6.13184889 6.6949351 7.2580213
Time 0.61165990 1.5463175 2.4809751
I(Time"2) -2.15045923 -1.3260262 -0.5015931
I(Time"3) -0.01099486 0.1710130 0.3530209
Gender -0.84242491 -0.1213602 0.5997044

attr(,"label")
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[1] "Fixed effects:"

Random Effects:
Level: Person

lower est. upper
sd( (Intercept)) 1.4834804 1.8854932 2.39644858
sd (Time) 0.1689522 0.4056477 0.97394441

cor ( (Intercept),Time) -0.6774066 -0.3523010 0.08794113

Correlation structure:

lower est. upper
Phi -0.1913577 0.1323070 0.4300194
attr(,"label")
[1] "Correlation structure:"

Within-group standard error:
lower est. upper
1.168776 1.456947 1.816170

F(1, 113.02) = 0.11, p > .05.

The final part of the output tells us about the random parameters in the model. First of all, the
standard deviation of the random intercepts was 1.89 (95% Cl: 1.48, 2.40). The confidence interval
does not cross zero, which suggests that we were correct to assume that life satisfaction at baseline
varied significantly across people. Also, the people’s slopes varied significantly, 0.41 (0.17, 0.97). This
suggests also that the change in life satisfaction over time varied significantly across people too.
Finally, the correlation between the slopes and intercepts (-0.35) suggests that as intercepts
increased, the slope decreased, but the confidence interval suggests that this pattern is not significant
because it crosses zero (—0.68, 0.09).

These results confirm what we already know from the chapter. The trend in the data is best
described by a second-order polynomial, or a quadratic trend. This reflects the initial increase in life
satisfaction 6 months after finding a new partner, but a subsequent reduction in life satisfaction at 12
and 18 months after the start of the relationship. The parameter estimates tell us much the same
thing. As such our conclusions have been unaffected by including gender.

Task 3

e  Getting kids to exercise (Hill, Abraham, & Wright, 2007): The purpose of this research was to
examine whether providing children with a leaflet based on the ‘theory of planned
behaviour’ increases children's exercise. There were four different interventions
(Intervention): a control group, a leaflet, a leaflet and quiz, and a leaflet and plan. A total of
503 children from 22 different classrooms were sampled (Classroom). It was not practical to
have children in the same classrooms in different conditions, therefore the 22 classrooms
were randomly assigned to the four different conditions. Children were asked ‘On average
over the last three weeks, | have exercised energetically for at least 30 minutes times
per week’ after the intervention (Post_Exercise). Run a multilevel model analysis on these
data (Hill et al. (2007).dat) to see whether the intervention affected the children’s exercise
levels (the hierarchy in the data is: children within classrooms within interventions).

Here is a graph of the data; the big dots are means for the schools, the boxplots are standard ignoring
the structure.
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Let’s assume that you have set up your working directory to be the folder in which the data file is
stored. We can read these data into a dataframe called exerciseData as follows:

exerciseData = read.delim("Hill et al. (2007).dat", header = TRUE)

The data file looks like the image: note that the intervention group is stored as text rather than
numbers (control, leaflet, leaflet + quiz, leaflet + plan). R should convert this variable to a factor when
it reads in the data and handle it intelligently. At least, we can hope so.

To do the analysis, we can create a baseline model that contains only the intercept as a predictor of
post-intervention exercise (note we have no missing data, so | have omitted the na.action option):

intercept<-gls(Post_Exercise~1, data = exerciseData, method = "ML'™)
Then add in a random intercept that varies over classrooms (Classroom):

randomint <-Ime(Post_Exercise~1, data = exerciseData, random = ~1|Classroom, method =
YRD

The final model updates the random intercept model to include intervention as a predictor:
intervention<-update(randomlnt, .~. + Intervention)

We can compare these models with:

anova(intercept, randomlnt, intervention)

Model df AIC BIC logLik Test L.Ratio p-value
intercept 1 2 853.0918 861.5330 -424.5459
randomInt 2 3 836.3542 849.0159 -415.1771 1 vs 2 18.737664 <.0001
intervention 3 6 836.8585 862.1820 -412.4292 2 vs 3 5.495703 0.1389

Adding in the random effect of intercepts across classrooms results in a significantly better-fitting
model, (1) = 18.74, p < .001. However, adding in the effect of intervention does not, y2(3) = 5.50, p
=.14. Note that with the addition of intervention we get three new degrees of freedom (6 degrees of
freedom instead of 3). This might seem odd given we have added only one predictor, but this reflects
the fact that Intervention has been split into three dummy variables comparing each group against
the first category (the control). As such, we have added three parameters to the model, not one.

We can get a model summary using:

summary(intervention)
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0o i Data Editor —

Intervention !Classro:rm iPre_Ex_ercise |Post_Exerc se [ |
Control 1 2.54951 2.54951 &
Control 1 2.345208 2.345208

Control 1 0.707106G8 0.7071068

Control 1 0.707106E 07071068

Control 1 1.224745 0.7071068

Control 1 1.870829 2.121320

Control 1 2.121320 2.121320

Control 1 1.58113%9 1.581139

Control 1 0.707106E 0.7071068

Control 1 1.581134 1581134

Control 1 1.581139 1.224745

Control 1 1.581139 2.345208

Control 1 1.581139 2.54051

Control 1 1.581139 0.7071068

Control 1 2.738613 1.87082%

Control 1 2.121320 2121320

Control 1 1.581139 1.58113%

Control 1 0.7071068 1.224745

Control 1 0.7071068& 0.7071068

Control 1 1.224745 1.581139 |
Control 1 2.121320 2.121320 -
Control 1 07071068 0.7071068 -:
Control 5 2.54951 2.54951 '

The model summary is as follows:

Linear mixed-effects model fit by REML
Data: exerciseData
AIC BIC logLik
849.9616 875.2372 -418.9808

Random effects:

Formula: ~1 | Classroom
(Intercept) Residual
StdDev: 0.1542001 0.5392267
Fixed effects: Post Exercise ~ Intervention
Value Std.Error DF t-value p-value
(Intercept) 1.6479107 0.07897683 481 20.865749 0.0000
Intervention[T.Leaflet] 0.1874555 0.11527284 18 1.626189 0.1213

Intervention[T.Leaflet + Plan] 0.2493624 0.11613323 18 2.147209 0.0456
Intervention|[T.Leaflet + Quiz] 0.1351455 0.11152106 18 1.211838 0.2412
Correlation:

(Intr) I[T.L] I[T.+P
Intervention[T.Leaflet] -0.685
Intervention[T.Leaflet + Plan] -0.680 0.466
Intervention[T.Leaflet + Quiz] -0.708 0.485 0.482

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.60230928 -0.52527291 0.02427543 0.63070950 2.80192525

Number of Observations: 503
Number of Groups: 22

The fixed effects give the information in which most of you will be interested. Interestingly, although
we know that intervention did not significantly improve the fit of the model, y%(3) = 5.50, p = .14,
when this effect is broken down we find that although the leaflet condition, b = 0.19, t(18) = 1.63, p >
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.05, and the leaflet and quiz condition, b = 0.14, t(18) = 1.21, p > .05, did not differ from the control
group, the leaflet and plan group did, b = 0.25, t(18) = 2.15, p < .05.

The result from these data could be that the condition failed to affect exercise. However, there is a
lot of individual variability in the amount of exercise people get. A better approach would be to take
into account the amount of self-reported exercise prior to the study as a covariate.

Task 4

e Repeat the above analysis but include the pre-intervention exercise scores (Pre_Exercise) as
a covariate. What difference does this make to the results?

This task is a simple extension of the previous one. Therefore, we can simply update the model called
intervention to include Pre_Exercise:

finalIntervention<-update(intervention, .~. + Pre_Exercise)

anova(intervention, finallntervention)

summary(final Intervention)

Model df AIC BIC logLik Test L.Ratio p-value
intervention 1 6 836.8585 862.1820 -412.4292
finalIntervention 2 7 389.6581 419.2022 -187.8290 1 vs 2 449.2004 <.0001

Adding in the effect of Pre_Exercise significantly improves the fit of the model (i.e., it is a significant
predictor of post-intervention exercise), y%(1) = 449.20, p < .0001. The model is:

Linear mixed-effects model fit by maximum likelihood
Data: exerciseData
AIC BIC logLik
389.6581 419.2022 -187.8290

Random effects:
Formula: ~1 | Classroom
(Intercept) Residual
StdDev: 0.04170216 0.3493499

Fixed effects: Post_Exercise ~ Intervention + Pre_ Exercise
Value Std.Error DF t-value p-value

(Intercept) 0.4424141 0.05698607 480 7.763548 0.0000
Intervention[T.Leaflet] 0.1584760 0.05079900 18 3.119668 0.0059
Intervention[T.Leaflet + Plan] 0.2184495 0.05161469 18 4.232312 0.0005
Intervention[T.Leaflet + Quiz] 0.2070905 0.04999701 18 4.142058 0.0006
Pre_Exercise 0.7154123 0.02650430 480 26.992306 0.0000

Correlation:

(Intr) I[T.L] I[T.+P I[T.+Q
Intervention|[T.Leaflet] -0.415
Intervention[T.Leaflet + Plan] -0.409 0.480
Intervention[T.Leaflet + Quiz] -0.482 0.493 0.486
Pre_Exercise -0.783 -0.024 -0.024 0.053

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.7344350 -0.6164039 0.1411349 0.4840052 3.4070963

Number of Observations: 503

Number of Groups: 22

Note that, unlike before, now we are factoring in the baseline level of exercise (b = 0.72, t(480) =
26.99, p < .0001), all of the interventions have a significant effect compared to the control group:
leaflet, b = 0.16, t(18) = 3.12, p < .01; leaflet and plan, b = 0.22, t(18) = 4.23, p < .001; and leaflet and
quiz, b =0.21, t(18) = 4.14, p < .001.

PROFESSOR ANDY P FIELD

24



